
Ontology-Driven Data Semantics Discovery for
Cyber-Security

Marcello Balduccini, Sarah Kushner, and Jacquelin Speck

College of Computing and Informatics
Drexel University

{mbalduccini, sak388, jspeck}@drexel.edu

Abstract. We present an architecture for data semantics discovery ca-
pable of extracting semantically-rich content from human-readable files
without prior specification of the file format. The architecture, based on
work at the intersection of knowledge representation and machine learn-
ing, includes machine learning modules for automatic file format identi-
fication, tokenization, and entity identification. The process is driven by
an ontology of domain-specific concepts. The ontology also provides an
abstraction layer for querying the extracted data. We provide a general
description of the architecture as well as details of the current implemen-
tation. Although the architecture can be applied in a variety of domains,
we focus on cyber-forensics applications, aiming to allow one to parse
data sources, such as log files, for which there are no readily-available
parsing and analysis tools, and to aggregate and query data from multi-
ple, diverse systems across large networks. The key contributions of our
work are: the development of an architecture that constitutes a substan-
tial step toward solving a highly-practical open problem; the creation
of one of the first comprehensive ontologies of cyber assets; the devel-
opment and demonstration of an innovative, non-trivial combination of
declarative knowledge specification and machine learning.
Keywords: data semantics discovery; ontologies; machine learning; cyber-
security.

1 Introduction

An ad hoc data source is a data source for which parsing and analysis tools
are not readily available [6]. Even well-documented, established file formats can
evolve over time or change with various configuration settings, effectively be-
coming ad hoc to users who have not followed the changes. Ad hoc data sources
present unique challenges for information technologists, cyber-security analysts,
and other professionals who must parse and interpret such data for diagnostic
or forensics purposes.

We attempt to address the challenges associated with ad hoc file formats
through development of an data semantics discovery architecture for extracting
semantically-rich content from human-readable files without prior specification
of the file format. The proposed system includes modules for automatic file for-
mat identification, tokenization, entity identification, and storage of extracted



records and entities. Using a process driven by an ontology of domain-specific
concepts, these components interact to parse data from an input file by identify-
ing file format, records and entities within them, and by associating the extracted
content with concepts from the ontology. Once data is extracted and stored, the
ontology also provides an essential abstraction layer for querying the extracted
data, with queries that can span across multiple file systems, file formats and
levels of abstraction. In the prototype implementation presented in this paper,
the ontology is tailored to cyber-security applications.

Searching for signs of a cyber attack in log files is one practical use for the
proposed architecture. Time constraints and lack of documentation can make
it difficult to find or create parsers for every log file format encountered, and
the magnitude of those challenges increases when dealing with large networks of
independent file systems. Security analysts must not only be aware of every type
of log available on every network node, but be able to correlate information from
multiple sources and reveal important underlying relationships between them.
As a motivating example, consider a scenario in which a cyber-security analyst
is notified of a new kind of cyber attack following this pattern:

1. A malicious e-mail with an attachment is received somewhere on the network.
The sender’s e-mail address varies, but it always ends in a “.net” suffix.

2. The recipient of the e-mail opens the attachment, unaware that it is a virus.
3. The virus establishes a DNS (Domain Name Server) tunnel1 towards a server

with the domain name “cyberattacks.com”

In this scenario, an analyst wishes to investigate whether this attack occurred
somewhere on his or her network. However, the network includes many nodes,
each with their own unique configuration, services, and corresponding log files
(see Figure 1). The information is stored using different formats depending on the

client 192.168.157.1#5544: query: maliciousserver.com IN AXFR +T

(192.168.157.129)

11/21/2013 2:15:59 PM 0A30 PACKET 00000085FD4B0610 UDP Snd

199.7.91.13 cf1b Q [0000 NOERROR] A (3)www(6)maliciousserver(3)com(0)

11/21/2013 2:16:01 PM 00D4 PACKET 00000085FD4B2320 UDP Snd

193.0.14.129 aba7 Q [0000 NOERROR] AAAA (3)www(6)maliciousserver(3)com(0)

Fig. 1. Sample DNS query records: bind format (top) vs MS DNS format (bottom)

node’s specific configuration and softwares used, and understanding the meaning
of a log entry requires knowledge that is not explicitly stated in the entry itself
(e.g., string “+T” in Figure 1). To make things worse, in realistic circumstances,
the analyst often has incomplete knowledge about the attack. In our case, for

1 http://beta.ivc.no/wiki/index.php/DNS Tunneling.



instance, the full address of the malicious DNS server and the e-mail address
from which the virus originates are both unknown. Although fictitious, this sce-
nario captures many challenges analysts are faced with in actual situations. In
particular, the large amounts of data and the disparate, hardly predictable ways
in which it may have been encoded make manual browsing of the files unfea-
sible. Additionally, traditional text-based search, which is relied upon by most
state-of-the-art cyber-forensics tools, is also not advisable, as it typically leads
to many irrelevant results and forces analysts to a time-consuming and error-
prone manual post-processing phase. For example, searching for strings or email
addresses (e.g., using regular expressions) with a “.net” suffix across all of the
files will likely return matches that have nothing to do with emails received by a
mail server, such as records from authentication logs. Furthermore, use of string
matching does not allow an analyst to specify additional constraints, such as
checking whether other logs indicate that the recipient’s computer may have
initiated a DNS tunnel to a certain family of servers..

Using our proposed architecture, the analyst can import log files from across
the network into a unified knowledge base. The architecture includes modules
capable of parsing all log files, regardless of configuration-dependent format vari-
ations. Finally, the analyst can ask queries that specify the types of information
they wish to find, while the system automatically identifies the correct sources
and content. This enables searching for signs of the cyber attack using high-level
queries that capture the entire attack, rather than having to piece by hand the
possible evidence of the individual stages.

The key contributions of our work are: the development of an architecture
that constitutes a substantial step toward solving an open problem of high prac-
tical importance; the creation of one of the first comprehensive ontologies of
concepts related to cyber assets; the development and demonstration of an in-
novative, non-trivial combination of declarative knowledge specification and ma-
chine learning techniques.

The remaining sections of this paper are organized as follows. Background on
existing solutions for the problems addressed by the architecture are described
in Section 2. Section 3 provides details of each component of the architecture.
An experimental evaluation of performance of the machine learning techniques
user by the architecture is presented in Section 4. Section 5 concludes the paper
and discusses possible directions of future work.

2 Related Work

To the best of our knowledge, our data semantics discovery architecture is the
first of its kind. It is worth pointing out that the problem being solved here is
substantially different from Natural Language Processing (NLP) and from tra-
ditional Information Extraction (IE). The data sources considered here typically
lack the grammatical structure considered by NLP and IE. Furthermore, differ-
ently from NLP and IE, the meaning of a record frequently depends on the file
that contains it – e.g., line “03/08/2015 10.0.0.1” describe very different events



depending on whether it is found in a web server log file or in a DNS server log
file. For the most part, earlier and ongoing research has studied sub-problems
addressed by our architecture.

The problem of describing knowledge related to cyber-security scenarios is
the object of various proposed specifications, such as STIX, CybOX, MAEC.2

However, none of them provides a comprehensive and hierarchical description of
the software and hardware components of a system, covering operating system
objects and events.

Aggregating data from multiple file systems can help network administra-
tors detect network problems or diagnose potential causes of earlier problems.
Varying file formats and data schemas can complicate these tasks. Doan, et. al.
present Learning Source Descriptions (LSD), a system for reconciling schemas
from disparate data sources using machine learning [5]. LSD learns semantic
mappings between multiple XML data sources, employing and extending estab-
lished machine learning techniques. LSD incorporates user feedback to improve
the accuracy of the mappings.

Splunk is a tool for aggregating massive heterogeneous datasets of log file
text into a semistructured time series database [3]. It claims to accept logs in
“any” format, and allows full text searches across various data sources via its
own query language. The decision to aggregate data into a time series database
was motivated in part by the fact that time stamps are one of the only common
fields among many different types of log data, and contain essential information
for many types of analysis (including cyber-forensics). Splunk exploits this time
series organization during searches, operating on only the time slices that inter-
sect the query target time. The Splunk query language supports a wide range
of complex functionality, including data mining techniques such as clustering,
anomaly detection, and prediction.

The presence of log file formats unfamiliar to network analysts often com-
plicates their diagnosis of system failures and vulnerabilities. SherLog is a diag-
nostic tool capable of reverse-engineering log file formats. However, SherLog is
limited to single file systems and only applies to log files produced by specific,
known executable programs [15].

Tupni, another tool for reverse-engineering both protocol and file formats,
expands beyond simple data types, extracting record types, record sequences,
and input constraints [4]. However, Tupni requires both a sample file and an ap-
plication capable of parsing the file as input. The tool therefore can not support
ad hoc data sources, which have no readily available parsing tools. Splunk, an
aggregation tool discussed above, supports ad hoc formats in the sense that users
may configure arbitrary input types. However, it does not automatically learn
how to parse these input types. While Splunk does not require users to specify
a schema for the data to be indexed, users must specify fields and values to ex-
tract. It includes tools that guide the user through creating regular expressions
to extract fields and values for each incoming time-delineated event.

2 https://stix.mitre.org/.



Tokenization and entity extraction form ad hoc data sources is one of the core
problems related to data semantic discovery. In-depth studies of the log analysis
process have found that non-technical users increasingly need data from log files,
but code development knowledge is a beneficial or even necessary prerequisite to
log file understanding [1, 12]. A lack of documentation can also create difficulties
for technical users, who often have to sort through program code in order to
discover what information is logged. Technical and non-technical users would
benefit from tools that can automatically extract, categorize, and assign semantic
meaning to tokens from log files.

DEC0DE is a tool for recovering information from mobile phones with un-
known storage formats, to aid in criminal investigations [13]. The tool com-
pares small blocks of unparsed data to a library of known hashes in order to
reveal information of interest, then parses the remaining data with adapted
NLP techniques. Fisher, et. al. introduced LearnPADS, an end-to-end system
for generating data processing tools directly from ad hoc data [6–8]. It employs
a multi-phase algorithm for inferring the structure of ad hoc data sources and
generating templates in the PADS data description language. The data itself
is then used to generate a semistructured query engine, format converters, sta-
tistical analyzers, and visualization routines, without human intervention. The
system has similar goals to our work, but does not include a method for storing
and retrieving previously-recognized formats, which would prevent repeating the
structure-inference process every time a particular ad hoc structure is encoun-
tered. Furthermore, unlike our work, the LearnPADS system is not capable of
inferring higher-level relationships from the available data in order to establish
links between information from multiple files, possibly across multiple file sys-
tems (e.g., to allow a user to ask “show me all incoming traffic from source IP
10.0.0.10”). Another drawback is the PADS language itself, which requires users
to provide a priori knowledge of the data formats present in the data set to be
analyzed. This means that LearnPADS can support ad hoc file formats, but not
ad hoc entity strings as our proposed architecture can.

After learning to parse and extract tokens from an ad hoc file format, it is
necessary to assign meaning to the extracted entities. Splunk relies on the user to
specify the semantic meaning of extracted entities that it does not already recog-
nize. Seaview uses fine-grained type inference to generate log file visualizations
based on the semantic meanings (e.g., “Student ID” as opposed to “Integer”
or “String”) of extracted tokens [9]. Seaview infers semantic relationships be-
tween fields in log files, but does not represent record types or file types as our
architecture does.

FlashExtract is a newer framework for extracting data from ad hoc docu-
ments using examples [10]. However, extraction is performed on a per-file basis,
requiring users to highlight examples in every individual input file instead of gen-
erating parsing templates for previously-seen formats. FlashExtract also does not
utilize an ontology to define semantic relationships between data entities.



3 The Data Semantics Discovery Architecture

Figure 2 shows the proposed data semantics discovery and the relationships
between its components.
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Fig. 2. Proposed architecture

The system includes a soft-
ware modules for File Format
Identification, Template Gener-
ation, Parsing, Data Storage,
and Querying. The user provides
an ontology of domain-specific
concepts and their relationships,
which captures the concepts and
the levels of abstractions that
the user expects to later use
for querying. All of the classes
that one would expect for such
a domain-specific ontology are
specified, including concepts file
types, record types, entity types,
but also processes, files, system
queues, etc. In addition to these
typical components, concepts de-
scriptions in the ontology also in-
clude, whenever available, a spec-
ification of training data in the
form of collections of labeled sam-
ples.

An overview of each compo-
nent is provided below. However,
any architectural component can
be modified or replaced to better
suit other applications.

In order to simplify the process, our work relies on a few assumptions. The
Template Generator and Parsing components assume that alphanumeric char-
acters are never used as delimiters between tokens, and only non-alphanumeric
characters may serve as delimiters. However, the Template Generator lifts this
assumption, as non-alphanumeric characters are often part of data entities (e.g.,
“.” as part of an IP address token). While the Template Generator does not
assume structure to be homogeneous throughout the entire input file, it assumes
that the file contains at least one group of lines that can be parsed using each set
of delimiters. The process for identifying delimiters is described in greater detail
in later. Tokens from the same column in any given line group are assumed to
represent the same entity type (e.g., if the token before the first delimiter on a
line represents a timestamp, all lines that are formatted the same way contain a
timestamp in that position). While all entities appearing on a given line of text



are considered to be part of the same record, their order is not considered for
interpretation of the record.

The architecture first identifies the format of the input using supervised
machine learning. The result dictates whether the system attempts to retrieve
the corresponding parsing template, or create one if no such template exists. The
Parser extracts tokens to match per-entity regular expressions in the template,
then disposes of duplicate or irrelevant entries. Finally, the extracted tokens
are classified by entity type (e.g., “Date-Time,” “IPV4,” etc.), and mapped to
the ontology as complete records. If it encounters information that does not
correspond to existing ontology classes, the system is capable of adding new
classes to the ontology. This feature is, however, beyond the scope of the present
paper and will be discussed separately.

3.1 Ontology

In the proposed architecture, an ontology provides domain knowledge about
cyber assets, associates type labels and samples, and stores the data extracted
from the files. The domain-specific knowledge contained in the ontology is of
the type that is found in textbooks or manuals. This information is specified at
development time, and we expect that it is sufficiently general to be sufficient
for most scenarios and applications, but obviously it can also be easily extended
at run-time. The two top-level classes of the ontology are events and objects,
described in more details next.
Events: this class is used to describe host-level events. The data semantics dis-
covery architecture views log files as collections of records of events, with each
log file potentially including multiple types of records. The sub-classes of events
include:

– Hardware Events : events that occurred at the hardware level. This category
contains sub-classes for events such as overheating, physical disk damage,
peripherals connected/disconnected, etc.

– OS Events : events relevant to the kernel, communications layer, software
processes, and user actions. Each is described by a different sub-classes, and
further divided as appropriate.

All event records identified by the system will be (direct or indirect) sub-classes
of the above. The latter class encompasses the largest set of sub-classes, and it
is likely that most ad hoc log formats encountered by users will describe events
from that category.
Objects: this class represents basic data entities, such as email addresses and
network addresses, as well as physical and software objects. Intuitively, events
result from actions performed by objects and/or on objects. The ontology in-
cludes all objects related to events the user wishes to monitor through log file
records. Sub-classes capturing specific object types, including:

– Hardware Objects : physical components of a computer, such as a keyboard
or a video card.



– OS Objects : software objects for which the OS is directly responsible, such
as processes, threads, memory; also, objects that exist within, or are created
by, applications.

Sub-classes of OS Objects include dhcp tables, which are maintained by the
dhcp service, and email messages, which are handled by the email daemon.
Files and directories are also OS Objects, and the various types of log files are
further sub-classes of files.

The links among the various objects and between objects and events are ex-
pressed using a few general properties. For example, properties allow the system
to memorize in which log file a record was found. Some properties apply to whole
classes of the ontology, while others are specific to instances of classes containing
the information extracted from log files.

OS Event

Network Event

                         DNSQueryRecord
trainingSamples: 

C:\LogFileDirectory\bind.log

Instance:
recordType: DNSQueryRecord
in-file: DNSLog_25
Contains: (IPPortPair, “192.168.157.1#5544”)

(domainName, “maliciousserver.com”)
(IPv4Address, “192.168.157.129”)
(dnsQuery, “maliciousserver.com IN     

                   AXFR +T (192.168.157.129)”)

networkAddress

IPAddress MACAddress

                             IPv4Address
trainingSamples: 
C:\LogFileDirectory\bind.log

IPv6Address

Fig. 3. Storage of a DNS Query Record

The most important prop-
erty in the first category is
trainingSamples. This prop-
erty is applicable to any class
and specifies a path the file(s)
containing samples of that class
to be used for classifier train-
ing. Samples are used as training
data for extracting and identi-
fying information from the data
sources (see below). Properties
that are applied to specific in-
stances include:

– in-file: applicable to any
event record (see Events
class), this property allows
to specify in which log file
the record was.

– contains: this property is
applicable to event records
as well, and is used to spec-
ify which data entities were
found in that record. For ex-
ample, many record types
contain a date-time entity.

– text: this property is appli-
cable to any data entity. It is
used to specify the text that
was identified as describing
that data entity. For exam-
ple, the value of the text property for an IPv4Address data entity could be
“10.0.0.1.”



To see how the information from data sources is encoded by the architecture,
consider the sample DNS query record from Figure 1 (top), a special case of a
DNS record that a user might search for in the example from Section 1.

Examples of key ontology elements pertinent to the identification and storage
of this record are illustrated in Figure 3. Property trainingSamples of classes
DNSQueryRecord and IPv4Address provides the location of the training sam-
ples for the extraction algorithms. Parsing of the record, performed using the
algorithms described later, creates a new instance of the DNSQueryRecord class.
This class is categorized as a Network Event, which is a sub-class of OSEvent.
A reference to the file in which the record was found is memorized by the in-
stance’s in-file property. Finally, the components of the record identified by
the parsing algorithms are stored as instances of appropriate data entity classes
and linked to the DNSQueryRecord instance via its contains property. For il-
lustrative purposes, here we visualize them as pairs of entity types and values:

– (IPPortPair, “192.168.157.1#5544”)

– (domainName, “maliciousserver.com”)

– (IPv4Address, “192.168.157.129”)

– (dnsQuery, “maliciousserver.com IN AXFR +T (192.168.157.129)”)

3.2 File Type Identification

Machine learning approaches for automatic classification can be divided into two
broad categories: supervised and unsupervised. Supervised methods both com-
pare unlabeled input samples to a set of labeled training samples. Unsupervised
approaches require no training data, instead labelling unknown input samples by
searching for hidden structures in the data set. A supervised approach best suits
our goal of categorizing formats according to labels from an ontology, although
exploration of semi-supervised approaches that require fewer labeled input sam-
ples is a goal for future work (see Section 5). The File Format Identification
component of our architecture identifies file types using a two-stage approach:

– Determining if file type is known: Has the system previously seen files of
the same type as the given input file? More generally, does this file contain
entities that the system is capable of identifying?

– Identifying the file type: If the given input file is of a known type, which
known type is it?

In order to train both classifiers, the architecture extracts training data from
the samples provided by the ontology, as discussed above.

The first stage of File Format Identification determines whether the input
file is of a “known” or “unknown” (i.e., not previously seen) type using a One-
Class Support Vector Machine (SVM) classifier for Novelty Detection. The One-
Class SVM is an adaptation of the traditional pairwise SVM, which determines
whether or not observed data points come from the same distribution by classify-
ing them as “in-distribution” or “outliers” [11]. Given a set of initial observations



from the same distribution, each described by p features, the classifier learns a
contour enclosing the distribution in p-dimensional space. If new observations lay
within the contour, they are considered to come from the same population as the
initial observation. If they lay outside the contour, they are considered “outliers”
belonging to some other distribution. We train a One-Class SVM to recognize all
files for which the system has data samples as “known” (i.e., “in-distribution”).
The second stage applies to input files classified as “known” during the first
stage, and determines which known file type the input corresponds to. Training
data for this stage includes labels for each known file format, which coincide with
the corresponding class names from the ontology. For the second stage of File
Format Identification, we combine several “traditional” pairwise SVM classifiers
to create a multi-class classifier [14].

From a technical perspective, both classification stages of the file type iden-
tification process use, as features for the learning algorithms, n-grams of space-
delimited tokens. In early evaluations, a combination of tri-grams and 4-grams
produced the best performance with over 99% accuracy for the second stage
of File Format Identification. To reduce dependency on the appearance of spe-
cific string values, we perform pre-processing to replace characters with generic
character type labels, i.e. numeric characters are replaced by character “N” and
alphabetic characters are replaced by “A.” Punctuation characters are left as-is
because they are often important features of specific entities (e.g., “.” in the IP
address “192.168.1.1”).3

As an example of file type identification in the prototype implementation of
this system, consider a file being analyzed for the motivating use case introduced
in Section 1. An excerpt from the file is shown in Figure 1 (bottom).

After extracting features, we use novelty detection to determine whether the
file is of a recognized type. The file falls within the distribution of recognized
samples, and is classified as being of a known type. The second classification
stage compares the file to each class of known files, and identifies it as a MS
DNS log.

3.3 Template Generation and Parsing

When it encounters an unrecognized file format, the architecture uses structural
cues from the file to generate a parsing template. For the prototype implementa-
tion presented here, Template Generation is a two-stage approach, consisting of
Delimiter identification, which identifies groups of lines that are parsed similarly,
and then identifies the delimiters in each line group, and Regular Expression
Generation, which forms regular expressions for the entities in each line group
after separating tokens in each line group using the delimiters identified. Both
steps are detailed next. The output of this process is a template for parsing the
input file. The template contains a set of regular expressions for matching each
entity contained in the file.
3 The evaluation of the effects of the replacement by character type labels and a

comparison with other possible approaches are in progress and will be discussed in
a separate article.



Delimiter Identification. Many log file formats are “homogenous,” mean-
ing that all lines contain the same fields and use the same delimiter. Examples of
homogenous log file formats include Comma-Separated Values (CSV) files and
Tab-Separated Values files. For these log files, identifying the delimiter is rela-
tively straightforward. However, some log files include a variety of different line
formats, with varying delimiters, field types, and even numbers of fields on each
line. To account for these files, Template Generation begins by grouping lines
in the input file that are formatted the same way. The remaining steps in the
Template Generation procedure are applied separately for each line group.

We have explored several methods for identifying line groups, largely based
on heuristics:

– Clustering by whitespace: lines with the same number of whitespace charac-
ters are clustered together.

– Clustering by all punctuation characters: similar to the first proposed method,
but considering the weighted counts of all punctuation characters.

– Clustering by alphabetic and numeric characters: considering weighted counts
of all types of characters.

In preliminary experiments with the prototype implementation, the first method
produced accurate templates for the files relevant to the scenarios of interest.

Delimiters are identified for each line group. We first identify candidate de-
limiters by counting the number of appearances of each punctuation character
on each line in the given line group, and counting the number of characters be-
tween appearances on each line. The delimiter for the line group is the candidate
that meets the following criteria:

– Has the minimum standard deviation in its per-line count.
– Has the largest standard deviation in the character distance between its

appearances (only applies if multiple characters meet the first criterion).

The first criterion is motivated by the assumption that all lines within the same
group contain the same number of fields. If this is the case, a delimiter character
should appear the same number of times on each line. However, we allow for some
variation in the count in case the character also appears within a nested entity.
The second criterion only applies if multiple characters meet the first criterion,
and is motivated by the experimental observation that few entity types have
fixed character lengths.

Regular Expression Generation. Once data entities in a given line group
have been identified, by the process of elimination after identifying delimiters,
the Template Generator learns Regular Expressions representing each column
of tokens (i.e., tokens before the first delimiter in a line group, tokens between
the first and second delimiters, etc.) extracted from the input file. To generate
regular expressions that match each column of tokens from a given line group,
the prototype implementation uses a Genetic Programming algorithm similar
to the one described in [2]. Extracted tokens are first pre-processed to replace
alphanumeric characters with “A” or “N.” The pre-processed tokens are used as



inputs to the Genetic Programming algorithm, from which we obtain a regular
expression that best fits all of the tokens from the column.

The templates generated by this process contain lists of regular expressions
for each line group. This substantially simplifies the parsing process, allowing to
reduce it to the task of extracting strings using regular expressions.

A particularly challenging case for Template Generation and Parsing is that
of user-configurable file formats, such as that of Apache web server logs. The
softwares that generate these logs provide users practically complete freedom
in the specification of which of the available data entities should appear in the
logs, and in which order. The Template Generation and Parsing component
accommodates these types of files by adopting two strategies:

– Allowing multiple templates for each file type: When multiple templates
exist, the Parser attempts to extract entities using all of them. The template
with the largest number of recognized entities extracted is considered to be
“correct” for our purposes.

– Generating a new template if too few recognized entities are extracted by the
Parser: When very few of the extracted tokens represent recognized entity
types, the system generates a new template and stores it with the existing
template(s) for the input file format. We apply a threshold for percentage
of recognized entity types to determine whether a new template should be
created.

3.4 Ontological Mapping

After parsing, the extracted tokens, records, and the files themselves are mapped
to the ontology, as follows.

The mapping algorithm begins with Entity Identification, in which tokens
extracted during the parsing process are mapped to data entities from the ontol-
ogy. The process is similar to that of File Type Identification: using the classes
and samples from the ontology as training data, first we determine if the input
token is a known entity type, then determine which type it is. We use SVMs for
this classification problem as well, with features extracted by applying the same
replacement by character type labels described earlier and by creating a count
vector of the character types (letters, numbers, and punctuation) for each token.

Once the extracted entities have been identified, combinations of entities are
stored as records as in the example from Section 3.1. The Mapper module must
determine which type of event record object to create (see Section 3.1 for an
overview of event types from the built-in ontology).

As before, training data for the record classification task is obtained from
the ontology, which specifies training samples and whose class names are used
as labels. The output of the File Format Identification module and the results of
the Entity Identification process described above are combined to form a feature
vector for supervised classification using SVMs.

The first element of the feature vector contains the file format label for the
input file, or the special label “UNKNOWN” if the file format was not recognized.



The remaining elements contain the count of every known entity type found
during Entity Type Identification, including the number of unrecognized entities.
For the kind of data considered here, the prototype implementation has shown
good results with this feature representation, which ignores the order of entities’
appearance in each record.

Finally, a supervised learning algorithm similar to the algorithm described
in Section 3.2 is used to classify the record as one of the known types from the
ontology.

3.5 Querying

Once the information has been extracted and stored, the analyst can leverage
the hierarchical organization of the ontology to ask queries that span across
multiple files and are independent of how the information was originally encoded.
In the case of the motivating example from Section 1, our architecture enables
the analyst to check for instances of the cyber attack of interest by posing the
following query, encoded here in a simplified pseudo-language to simplify the
presentation:
SELECT R1, R2, R3 WHERE

R1 is a mailRecord,

R1.contains (emailAddress, .net),

R1.contains (DateTime D1),

R2 is a dnsQueryRecord,

R2.contains (DateTime D2),

D2 > D1,

R2.contains (domainName, *cyberattacks.com),

R2.contains (networkAddress, victimPC),

R3 is a dnsQueryRecord,

R3.contains (DateTime D3),

D3 > D2,

R3.contains (domainName, *cyberattacks.com),

R3.contains (networkAddress, victimPC)

The first four lines of the query identify receipt of an e-mail from a “.net” e-
mail address and the remaining lines identify two subsequent DNS queries to
the malicious server, both occurring on the same network node. The query also
requires that the email arrival precedes the DNS queries (conditions D2 > D1
and D3 > D2). The first line of the query specifies that the corresponding
records must be returned, although of course it would be easy to also return,
for example, the date times and address of the victim, or the complete sender
e-mail address.

Such a query can be easily expressed in a state-of-the-art query language such
as SPARQL; for example the following shows how the first 4 lines are translated:

SELECT ?r1 ?r2 ?r3 WHERE {
?r1 rdf:type dsd:mailRecord .
?r1 dsd:contains ?e1 .
?e1 rdf:type dsd:EmailAddress .



?e1 dsd:text ?addr .
FILTER (REGEX(str(?addr), ”.net”)) .
?r1 dsd:contains ?d1 .
?d1 rdf:type dsd:DateTime .
...

}

Queries can even be built automatically from a higher-level specification, which
for example could be part of a library of known cyber attacks.

It is important to stress the practical advantage of the design of the ar-
chitecture for high-level query answering. In the case of the present example,
analyst can identify which network node opened the DNS tunnel regardless of
how the DNS queries were actually logged by the server(s). In fact, depending
on a server’s configuration, the information in the log files might identify net-
work nodes by their IPv4 addresses, their IPv6 addresses, or even their MAC ad-
dresses. However, because class networkAddress is a super-class for IPv4Address,
IPv6Address, and MACAddress (see Figure 3), the use of the networkAddress
class in the query encompasses all three network address types. This additional
level of abstraction allow analysts to disregard irrelevant low-level details as
needed.

4 Supervised Learning Evaluation

Successful identification and storage of known data types depends on the ef-
fectiveness of supervised learning as described in Section 3. In this section, we
report on an empirical evaluation of the learning components of our architec-
ture to enable comparison with future approaches. We evaluate the performance
of the supervised learning modules for file format, entity, and record classifica-
tion with ten cross-fold validations. The data used for this evaluation consist
of 2,022 text files from 29 file classes, which contain a combined 12,622 distinct
record samples from 22 record classes. The data for entity classification consist
of 291 entity samples from 11 classes. The number of entity samples is small
compared to the number of record and file samples because we have accounted
for duplicates removed during the feature pre-processing step by replacement by
character type labels described earlier. Recall that this pre-processing replaces
specific alphanumeric characters with character type representations, reducing
the number of unique samples required. For all classification problems, the num-
ber of samples was distributed as close to uniformly as possible across all classes.

Common performance metrics for supervised learning include precision, the
fraction of retrieved instances that are relevant, recall, the fraction of relevant
instances that are correctly retrieved, and f-measure, the harmonic mean of pre-
cision and recall. Each metrics ranges from 0 to 1, with 1 being the best possible
score. The average metrics over all ten cross-validation folds are shown in Ta-
ble 1. Although the performance is, overall, satisfactory, a discussion of possible
ways to improve it is provided in the next section. SVMs were chosen for all
three classification problems because they outperformed several other classifier
types in preliminary evaluations, but further evaluations of various classifier and
feature combinations will be included in future work (see Section 5).



Precision Recall F-Measure

File Format Identification 0.9791 0.9808 0.9799

Record Type Identification 0.835 0.8438 0.8394

Entity Type Identification 0.8279 0.7819 0.8042

Table 1. Supervised learning performance

5 Conclusions and Future Work

We have presented a data semantics discovery architecture capable of parsing
and interpreting data from multiple ad hoc data sources, and of correlating in-
formation from multiple sources regardless of the format and level of abstraction
at which the information was originally encoded. The extraction process is effec-
tively driven by an ontology of domain-specific concepts, which provides samples
and labels for the underlying algorithms. The same architecture is also used for
answering queries about the extracted data.

Our architecture moves beyond parsing techniques requiring prior knowledge
of file formats and is a step toward parsing data sources with completely arbitrary
formats. Any component of the architecture can be adjusted or replaced to better
suit a user’s needs or to perform comparative studies of alternative techniques.
The evaluation of the architecture in realistic conditions is under way.

From a practical point of view, our architecture improves upon existing search
methods common in cyber-security tools by adding a layer of semantic under-
standing of the extracted data via an ontology, which allows a user to ask higher-
level queries and at the same time tends to return more relevant results than
the string-based search methods used by most cyber-security tools.

This paper presented the overall architecture and described its use. Next, we
plan to study how the performance of the system (e.g., execution time, accu-
racy) is affected by the adoption of different techniques for the implementation
of its various components. For example, different combinations of features or use
of ensemble methods may improve classification performance over the metrics
presented in Section 4. In turn, improving classification performance may ben-
efit overall performance because the system naturally depends on accuracy of
classification during insertion of data into the knowledge base.

The use of the ontology may help to compensate for misclassifications or
ambiguities between related low-level data types. If, for example, an IPv4 address
is misclassified as an IPv6 address, it will still be identified as network address
and will be returned in response to queries for entities of that type. Exploration
and quantitative evaluation of this idea are another subject for future work.

Finally, although we have discussed our architecture in a cyber-security con-
text, we believe it to be applicable to a wide range of domains by simply providing
an appropriate ontology and training samples. Verification of this claim will be
another direction of future work.

Acknowledgment: The authors would like to thank Philip J. Yoon for useful
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References

1. S. Alspaugh, B. Chen, J. Lin, A. Ganapathi, M. Hearst, and R. Katz, “Analyzing log
analysis: an empirical study of user log mining,” in Conference on Large Installation
System Administration (LISA), 2014.

2. A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet, and E. Sorio, “Auto-
matic Synthesis of Regular Expressions from Examples with Genetic Programming,”
Proceedings of the 14th Annual Conference Companion on Genetic and Evolution-
ary Computation, 2012.

3. L. Bitincka, A. Ganapathi, S. Sorkin, and S. Zhang, “Optimizing data analysis with
a semistructured time series database,” in Proceedings of the 2010 workshop on
managing systems via log analysis and machine learning techniques (SLAML ’10),
2010.

4. W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic
reverse engineering of input formats,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, ACM, 2008.

5. A. Doan, P. Domingos, and A. Y. Halevy, “Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach,” ACM SIGMOD Record, vol. 30, no. 2, p.
509–520, 2001.

6. K. F. White, D. Walker, K. Q. Zhu, and Peter, “From dirt to shovels: fully automatic
tool generation from ad hoc data,” ACM SIGPLAN Notices, vol. 43, no. 1, p. 421–
434, 2008.

7. K. Fisher, D. Walker, and K. Q. Zhu, “LearnPADS: automatic tool generation from
ad hoc data,” in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, p. 1299–1302, 2008.

8. K. Fisher and D. Walker, “The PADS project: an overview,” in Proceedings of the
14th International Conference on Database Theory, 2011, ACM, 2011.

9. S. Hangal, “Seaview: Using Fine-Grained Type Inference to Aid Log File Analysis.”
(2011).

10. V. Le and S. Gulwani, “FlashExtract: A framework for data extraction by ex-
amples.” Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014.

11. B. Scholkopf, et. al., “Estimating the support of a high-dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

12. W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding Log
Lines Using Developmental Knowledge,” in 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014.

13. R. J. Walls, E. G. Learned-Miller, and B. N. Levine, “Forensic Triage for Mobile
Phones with DEC0DE,” in USENIX Security Symposium, 2011.

14. Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise
coupling,” JMLR 5:975–1005, 2004.

15. D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “SherLog: er-
ror diagnosis by connecting clues from run-time logs,” ACM SIGARCH Computer
Architecture News, vol. 38, no. 1, p. 143–154, 2010.


